PROGRESS IN NATURAL SCIENCE

Vol. 16, No. 2, February 2006

A method of combining SE-tree to compute all
minimal hitting sets’

ZHAO Xiangfu and OUYANG Dantong*"

(School of Computer Science and Technology, Jilin University, Changchun 130012, China; Key Laboratory of Symbolic Computation and
Knowledge Engineering of Ministry of Education, Changchun 130012, China)

Received April 19, 2005; revised September 16, 2005

Abstract

In model-based diagnosis, the candidate diagnostic results are generally characterized by all minimal hitting sets for the

collection of all conflict sets. In this paper, a new method is proposed to judge a hitting set by the number of conflict sets corresponding to
components, and the computing procedure is formalized by combining revised SE-tree (set enumeration tree) with closed nodes to generate
all minimal hitting sets. Results show that because closed nodes are added into SE-tree, the search efficiency is highly improved. Further-
more, the proposed method is easy to be understood and implemented. Compared with other effective algorithms with completeness in
some experimental tests, the diagnosis efficiency of our proposed method is higher, particularly for single- and double-fault diagnosis.

Keywords: model-based diagnosis, conflict set, minimal hitting set, set enumeration tree.

Model-based diagnosis is one of the active re-
search branches in Artificial Intelligence. Its basic
principle is employing the model of a device to judge
faults logically, according to the difference between
the model’ s prediction and the observation. General-
ly, minimal conflict sets are firstly deduced by system
description and observation, and then the candidate
diagnoses are obtained by computing minimal hitting
sets for the collection of all minimal conflict sets.
Many methods have been proposed to compute mini-
mal hitting sets, such as HS-TREE!!, HS-DAG™!,
HST-TREE), BHS-TREE"!, BOOLEAN FOR-
MULASE!, LOGIC ARRAY!®), GENETIC ALGO-
RITHM!"!, etc. The main shortcomings of the above
methods include: (1) Some hitting sets may be lost
by pruning!"*?!; (2) a tree or a graph needs to be
constructed, and the corresponding data structure and
algorithm are quite complex“—'ﬂ; (3) computing by
recursion is rather inefficient!!™*!; (4) the complete-
ness of the results of some random search algorithms
cannot be guaranteed!”!; (5) commonly all hitting
sets are firstly stored, and finally they still need to be
reduced to minimal ones!*™®; (6) each component
needs to be mapped into a unique numerical value!®!.

In order to overcome the shortcomings men-
tioned above, we propose a novel method of judging a

hitting set by the number of conflict sets correspond-
ing to components. Furthermore, the procedure is
formalized by combining SE-tree!®! with closed nodes
to generate all minimal hitting sets. The advantages
of this method include; (1) Any hitting set will not
be lost by pruning; (2) although it is described by
tree structure, only simple linked list structure but
not tree or graph structure needs to be used, and it
can be easily implemented; (3) all the hitting sets ob-
tained are minimal, so final reduction is not needed,
and all the minimal hitting sets are bound to be ob-
tained; (4) since closed nodes are added to SE-tree,
and creation of nodes of non-minimal hitting sets is
avoided, the search efficiency is highly improved.

1 Preparation

Firstly, it is necessary to introduce some defini-
tions and theorems corresponding to model-based di-
agnosis. Then, we will introduce SE-tree briefly.

Definition 1.[1) A system is a triple (SD,
COMPS, OBS), where SD (the system descrip-
tion) is a set of first order sentences; COMPS (the
system components) is a finite set of constants; and
OBS (the system observation) is a finite set of first
order sentences.

* Supported by Program for New Century Excellent Talents in University, the Chinese National High Technology Research and Development Plan
(Grant No. 2003AA118020), Major Research Program of National Natural Science Foundation of China (Grant No. 60496320 and 60496321), Basic

Theory and Core Techniques of Non Canonical Knowledge

** To whom correspondence should be addressed. E-mail: ouyangdantong@163. com; ouyd@mail. jlu. edu. cn

170 www. tandf. co. uk/journals Progress in Natural Science Vol.16 No.2 2006

In the following, a unary predicate AB(+) is in-
terpreted to mean “abnormal”. AB(c) is true iff ¢ is
abnormal, where c € COMPS.

Definition 2.[') A conflict set (CS) for (SD,
COMPS, OBS) is a set {cy,c2,, ¢y} S COMPS,
such that SDU OBS U {~ AB(c,), ~AB(c3), ",
~ AB (¢,)} is inconsistent. A CS for (SD,
COMPS, OBS) is called a minimal conflict set
(MCS), iff no proper subset of it is a conflict set for
(SD, COMPS, OBS).

Definition 3.!!! Let F be a set cluster. A set H
is called a hitting set (HS) for F, if: (1) HS
[JS; (2) forany S€EF, HN S#¢. If no proper

SEF
subset of a hitting set H is a hitting set for F, then

H is called a minimal hitting set (MHS) for F.

We can conclude from Definition 3 that, if a set
Sis an MHS for F, and S, is a proper superset of
S;(i.e. S;is a proper subset of S;), then S; is not
an MHS for F. This conclusion is a theory basis of
adding closed nodes to HSSE-tree algorithm intro-
duced next.

Theorem 1.!"} D(A, COMPS-A) is a consisten-
cy-based diagnosis for (SD, COMPS, OBS), iff 4
is an MHS for the collection of conflict sets for (SD,
COMPS, OBS).

From Theorem 1, we can conclude that, if we
know all (minimal) conflict sets, then we can obtain
the diagnoses by computing all minimal hitting sets
for the {(minimal) conflict set cluster.

In the following, we will briefly describe SE-tree
proposed by Rymon[S]. It is suitable for enumerating
all the possible combinations of all elements of a set.
For example, a full SE-tree of S = {a, b, c,d! is
shown in Fig. 1.

)
/
a} (b}, © @
e
{ab) @ct {ad) (be) (bd) (cd)
{abc) {abd} lacd} {bcd}
{a,b,c,d}
Fig. 1. The SE-tree of the set {a, b,¢,d|.

2 The description of the method

Based on the above basic definitions, some defi-
nitions are given below, and several corresponding
theorems and corollaries are also outlined to describe
the method.

Definition 4. If ¢ € S, it means an element e is
relating to a set S. Moreover, Rcount (F, e) is
marked as the number of sets in the set cluster F,
each of which is related to the element e.

Theorem 2. Let F be a set cluster, a set H =
ler, ez, ", ;1 S US. If H is a hitting set for F,
SEF

then Rcount (F, e;) + Rcount (F, e;) + -+ +
Rcount(F,e;)=|F|.

Corollary 1. Let F be a set cluster. A set H=

U S is a hitting set for a set cluster F, iff the num-
SEF

ber of all the different sets, each of which is related to
some elements of H, is equal to | F|.

According to Corollary 1, we can judge whether
a set H is a hitting set for a set cluster F by comput-
ing the number of different sets in F, each of which
is related to some elements of H. This is the basis of
Algorithm 1 to be introduced next.

Theorem 3. Let F=1{S;,**, S, | be a set clus-
ter, m be the number of all the different elements in
Sy, S,. If k=min(n, m), then the length I of

any minimal hitting set for F is no more than k.

Proof. On the one hand, all elements of an
MHS are from all the different elements in Sy, -,
S, (the total number of different elements is m), so
{<m ; on the other hand, any MHS should intersect
with any S; in F, each element in an MHS is at least

relating to an S;, so [<X n. Therefore, [<

min(zn,m), i.e. I<k. Q.E.D.

Theorem 3 provides a theory basis for a termina-
tive condition of Algorithm 2 to be introduced next.

Example 1. Let a set cluster F = [{M;, M,, Ay},
{M;, M3, Ay, Ast}. We can obtain the total number
of elements m =5, the length of Fn = |F| =2, so
k =min(2,5) =2. Therefore, we can easily obtain all
the hitting sets for F: { M}, {A{l, { My, Mst,
{ M,, Ayl. Obviously, the length of any hitting set is
no more than £(k=2).

Progress in Natural Science Vol.16 No.2 2006 www.tandf.co.uk/journals 171

Next, we give the basic idea and the basic steps
of algorithms of computing all hitting sets for a set
cluster. The basic idea: For all the elements (we sup-
pose that the total number is m), combine the SE-
tree, enumerate all the necessary sets in the order of
Breadth-First, and judge whether the enumerating
set H is a hitting set for the set cluster F, i.e. by
computing the number of different sets in F, each of
which is related to some elements of H. If the num-
ber is equal to n, then H is a hitting set for F. At
the same time, add some flags (an MHS node
(“v7), a closed node (“x”)) to nodes to improve
the search efficiency.

Next, we will describe in detail the algorithm of
judging whether a set is a hitting set for a set cluster,
and the algorithm of computing all the MHSs.

Algorithm 1. The algorithm of judging whether
a set H is a hitting set for a set cluster F (IsHS)

Input: a set cluster F=1{S,, S;, -, S, |, US=

SEF
51U52U o U Sn = {Cla €25 "

s Cm!l, and a set H =
{c1, €250, Gl&e US (note: j is the length of H).
SEF
Output: a Boolean value.

The main operation of the algorithm IsHS is as
follows:

Step 1: Start from the first element of H, ini-
tialize the subscript: i = 1(1<<i<{j); introduce the
temporal variable F” = F; and initialize the number
of sets related to the element as counz =0.

Step 2: H F’ is empty, i.e. |F’'| =0, or all the
elements of H are computed, i.e. i >j, then judge
the total number of sets related to some elements in
the set H: if count = n, then return TRUE, else re-
turn FALSE, stop the algorithm. Otherwise contin-
ue.

Step 3: Compute the number of sets related to
the element ¢;: Rcount(F’, ¢;), then add to count,
i.e. count + = Rcount(F’, ¢;).

Step 4: Delete the sets related to the element c;
from F’, i.e. FF<F' \ {S|¢,€S}.

Step 5: Consider the next element of H, i.e.
i<=i +1, then return to Step 2.

Note: In this algorithm, it is not required that
all the sets in the set cluster F' are minimal (i. e.

there may exist some sets where one is a proper subset
of another); but if all the sets in F are minimal, the
efficiency will be further improved. And the time
complexity of this algorithm is O (nm) in the worst
situation.

Algorithm 2. The algorithm of combing the re-
vised SE-tree to compute all the MHSs (HSSE-tree)

Input: We suppose the inputs are a set COMPS
and a set cluster F, actually the set COMPS can be

obtained by F(COMPS = US=SIUSZU"'USn =

SEF

{ciscay s cmt). Output: all the MHSs.

In this algorithm, we do not use the tree struc-
ture, but the uniform linked list structure, such as
set-enumerating linked list enumSetLink, minimal
hitting sets linked list pHS, and need-to-extend
linked list needExLink, etc., and the structure of
the list is shown in Fig.2. Furthermore, we suppose
that the elements in the set COMPS are in some reg-
ular order (such as in dictionary order), and the ele-
ments in any enumerating set are also in the same or-
der as in COMPS.

enumSetData | next —| enumSetData | next —

Fig. 2. Nodes of the linked list.
The main operation of the algorithm HSSE-tree
is as follows:

Step 1: As the first layer of a SE-tree is an emp-
ty set, we start from the second layer, i.e. initialize
enumSetLink as the list of all single-element sets,
and let a pointer p point to the first linked node of
the enumSetLink. Initialize the need-to-extend
linked list needExLink and the minimal hitting sets
linked list pHS both NULL list, and let a pointer g
point to the first node of the needExLink. Suppose
m=|COMPS|, n=1|F|, k=min(#n, m); and
1 =2, as the current layer of the SE-tree.

Step 2: If i >k, stop.

Step 3: If p=NULL, goto Step 9, i.e. to ex-
tend the list of needExLink.

Step 4: Call the algorithm IsHS to judge
whether the set which p points to (i.e. p —
enumSetData) is a hitting set. If the algorithm re-
turn FALSE, then goto Step 7, else continue.

172 www. tandf. co. uk/journals Progress in Natural Science Vol.16 No.2 2006

Step 5: Judge whether there is any non-empty
set in pHS being a proper subset of the set p —
enumSetData . 1f not, i.e. it is an MHS, then add
the set p—>enumSetData to the pHS, and mark the
flag “~/” to the corresponding node of the SE-tree.
Otherwise, mark the flag “ X ” to the corresponding
node of the SE-tree.

Step 6: Free the node which p points to, and let
P point to the next node, goto Step 3.

Step 7: If the set p—>enumSetData containing
the last element of COMPS cannot be extended, then
mark the flag “ X" to the corresponding node of the
SE-tree, otherwise add the set to the need-to-extend
list of needExLink . Goto Step 6.

Step 8: If ¢ =NULL, i.e. the needExLink has
been completely extended, then goto Step 10.

Step 9: Let index<—the subscript of the element
in COMPS, which is the last in ¢ —=>enumSetData .
Then for (j =index +1; j<m; j+ +), merge all
the elements in the set of ¢q—>enumSetData and the
element COMPS [] into a new sequence set, and
add it to the enumSetLink; then free the node gq
points to, and let g point to the next node in the
needExLink, goto Step 8.

Step 10: Let the pointer p point to the first
node of the enumSetLink, i<i+ 1, goto Step 2.

Additionally, there is something to be explained
as follows:

(1) From Step 3 to Step 7, Algorithm 2 calls
IsHS to gradually judge whether the set in the current
node of the enumSetLink is a hitting set, at the same
time marks the flag “~/” or “ X" to the nodes of
MHSs or can-not-extend nodes in the SE-tree sepa-
rately, to close them to improve the search efficiency.

(2) Step 9 is the process of extending all the
nodes in the linked list of needExLink, and the ex-
tended sets are all added to the linked list of enwm-
SetLink .

(3) The hitting sets obtained by Algorithm 2 are
all the MHSs for the set cluster F. Because the pro-
cess of enumerating subsets by SE-tree is in the order
of Breadth-First, once a set is a hitting set and not a
proper superset of any generated MHS in the pHS,
then it is bound to be minimal. Furthermore, if the
node is an MHS, then the node is marked with

“J7, not to extend it. Therefore, all of its direct
subsequent nodes, which are bound to be the proper
superset of that MHS, can never be generated. If a
set is not a hitting set and it has the last element of
COMPS, then the node is marked with “ X”, and
cannot be extended. In addition, if a set is a proper
superset of some generated MHS, then the corre-
sponding node is also marked with “ X ”. Otherwise,
if a set is not a hitting set, and it does not have the
last element of COMPS, then it can be extended as
more as possible, so all the MHSs will be generated
finally.

(4) The time complexity of Algorithm 2 is

O(2™) in the worst situation, because the number of
k

nodes generated by SE-tree is at most E C (k=
iz

min{n, m)).
3 An example and the result

Example 2. Compute all MHSs of a set cluster
F={la,b,c,dl,{a,bt,1b,cl,la,ct, 1b,dl,
{ott.

(1) Initialize: enumSetLink = {{al, {b}, ic},
{d1l, i.e. all the single-element sets; the linked
lists of needExLink and pHS are both NULL. m =
4, n=6, k=min(n, m) =4, COMPS is a sequence
set {a, b,c,d}, and “d” is the last element of
COMPS.

(2) i=2; i<<k. Now the list of enumSetLink
is {{al, 16}, 1ct, {d}l. Call the algorithm IsHS to
judge and mark all the enumerating sets as follows:
{al: Reount(F,a)=3<6, as the set does not con-
tain “d”, the last element of COMPS, so the node is
added to the linked list of needExLink. |&1:
Reount(F,b)=5<6, as the set does not contain
“d”, the node is added to the list of needExLink .
{ct: Reount(F,c¢)=3<6, as the set does not con-
tain “d”, the node is added to the list of
needExLink. {d}: Reount (F,d)=2<6, as the
set contains “d”, the node is marked with “ X 7.

After judging and marking all the nodes of
enumSetLink, the linked list of enumSetLink is
NULL; and the linked list of needExLink becomes
{{at, {b}, {ctt.

(3) As the list of needExLink is | . «l, {b1,
{ct1, not NULL, it needs to be extended as follows:
{al is extended as {a, b}, la,ct, la,d!, and the

Progress in Natural Science Vol.16 No.2 2006 www. tandf. co. uk/journals 173

three new nodes are added to the enumSetLink, then
the node of {a ! in the needExLink is freed. {b} is
extended as | b, cl, {b,d!|; and both of the new
nodes are added to the enumSetLink, then {b1| in
the needEzLink is freed. {c!} is extended as {c,d};
and the new node is added to the enumSetLink, then
{e} in the needExLink is freed.

After extending all the nodes in the
needExLink, the enumSetLink becomes: |la, bi,
la,ct, la,dlt, {b,ct, {b,d}, tc,dll, and the
needExLink is NULL.

(4) i =3, i<4. Now, the enumSetLink is:
{ia,bl, la,cl, ta,dl, 1b,ct, {b,d}, {c,dl}.
Call the algorithm IsHS to judge and mark as follows:
{a, bl: calls the algorithm IsHS ({a, &1, F),
count =6 = n, so it is a hitting set; now pHS is
NULL, so it is an MHS. Then it is added to the
pHS, the node is marked with “~/”. la, cl: calls
IsHS({a,cl, F), count = 5<6, not a hitting set.
At the same time, there is no “d” in the set, so it is
added to the needExLink. la, d}: calls IsHS({a,
dl,F), count =3<6, not a hitting set, and “d” is
in the set, so it is marked with “X”. {b,c}: calls
IsHS({b, c|, F), count =6 = n, is a hitting set,
and not a proper superset of the generated MHS of
la, b}, so it is added to the list of pHS, and is
marked with “~/”. {b,d}: calls IsHS({&,d!, F),
count =5< 6, not a hitting set, and “d” is in it, so
it is marked with “X”. {¢,d}: calls IsHS(l¢, d},
F), count =4<6, not a hitting set, and “d” is in
the set, so it is marked with “ X ”.

After judging and marking all the sets in
enumSetLink, the list of enumSetLink i1s NULL;
and the list of needExLink becomes {la,cl}.

(5) As the list of needExLink is {1a,ct!l, not
NULL, it is extended as follows: {a,c!} is extended
as {a, c, d!, and the new node is added to the
enumSetLink, then {a, ¢| in the needExLink is
freed.

After extending needExLink, it becomes
NULL, and the enumSetLink becomes {la,c,d}}.

(6) i =4, i < 4. Now, enumSetLink is
{1a,c,dll, and call IsHS to judge and mark as fol-
lows: call IsHS({a, c,d}, F), count =5<6, not a
hitting set, and “d” is in it, so the node is marked
with “ X",

After judging and marking all the nodes in the

enumSetLink, both the enumSetLink and the
needExLink are NULL.

(7) Now, the list of needExLink is NULL, so
it needs not to be extended.

(8) 1 =5, i >k =4, so the algorithm is termi-
nated. Finally, all the MHSs for F are sets in the
linked list of pHS: {a, b} and {6, c!.

It is easily validated that the sets of {a, &} and
{b, c| are all MHSs for the set cluster for F (The
process of the method is given in Fig. 3).

{9}

> "

k=3 {ab} {ac} f{ad) {b.c} {ba} {cd}
v X v X X

k=4 {a’ c'd}
X
Fig. 3. The process of computing all MHSs combining SE-tree.

4 Comparisons

In Ref.[9], we know that the two methods of
Boolean Formulas and BHS-tree are more efficient
than other algorithms which can obtain all the MHSs
for a set cluster.

We have implemented a program in Visual C +
+ 6.0 to compare the efficiency of HSSE-tree with
BHS-tree and Boolean Formulas. The GUI of the
program is shown in Fig. 4. And we let all the con-
flict sets be like {1,2, -, m — 1}, {2,3, -, m|, -+,
{m,1,+, m -2} (Intel Pentium 4 CPU 2.60 GHz,
512 M RAM, Windows XP). When m =3,4, -, 20,
the experimental result is shown in Table 1 and Fig. 5.

From Table 1 and Fig. 5, we can see clearly
that HSSE-tree has the best efficiency among the
three better methods when there are more same ele-
ments among the conflict sets of the set cluster, i.e.
it is quite suitable for generating MHSs particularly
for single- and double-fault diagnosis, because the
depth of revised SE-tree is quite low. Therefore, the
number of generated nodes is very small. Results
show that with the increasing number of elements,
the diagnostic efficiency becomes more and more re-
markable.

174

www. tandf. co. uk/journals Progress in Natural Science Vol.16 No.2 2006

Table 1. Running time of the BHS-tree, Boolean Algebra, and HSSE-

A Boolean Yourmulas| Time (s)

Fumbar

HSSE-TRER Tina (s)

Fig. 4. The GUI of the program.

0.004330

of HISx

190

0002424

tree methods
Number of BHS-tree Boolean Algebra HSSE-tree
elements (m) (s) (s) (s)
3 0.000160 0.000042 0.000053
4 0.000351 0.000073 0.000077
5 0.000717 0.000115 0.000109
6 0.001338 0.000167 0.000148
7 0.002342 0.000232 0.000196
8 0.003873 0.000341 0.000254
9 0.006285 0.000443 0.000323
10 0.009864 0.000565 0.000408
11 0.015088 0.000716 0.000508
12 0.022243 0.000908 0.000618
13 0.032252 0.001130 0.000747
14 0.046080 0.001450 0.000926
15 0.065168 0.001754 0.001074
16 0.091164 0.002135 0.001279
17 0.122911 0.002611 0.001546
18 0.166507 0.003194 0.001821
19 0.225453 0.003772 0.002087
20 0.285578 0.004334 0.002356
0.30r
—a—BHS-tree
0.25} | -——o--Boolean Formulas
- -»-HSSE-tree
2 o20f
g
DED 0.15{
5 0.10F
0.05F
0

Fig. 5. Running time among BHS-tree, Boolean Formulas and

HSSE-tree.

10

15

Number of elements (m)

20

5 Conclusions

A novel method of generating all MHSs for a set
cluster has heen described in this paper. Firstly, an
algorithm of judging a hitting set is proposed. Then
combing with the revised SE-tree, the algorithm
HSSE-tree is proposed to gradually generate all the
MHSs. At the same time, by adding some closed
flags (“~/” and “ X ") into SE-tree, the search effi-
ciency is highly improved.

The method is easy to be understood and imple-
mented. Furthermore, when running the method
practically, the space of variables of nodes can be allo-
cated and freed dynamically. Therefore, the space u-
tilization is highly improved, and it can be used to
compute MHSs even when there are quite a lot of ele-

ments in COMPS.

Compared with other methods of computing
MHSs, especially the two methods with better effi-
ciency, our method is more efficient when there are
more same elements among the conflict sets of the set
cluster, i.e. it is quite suitable for generating MHS's
as candidate diagnostic results particularly for single-
and double-fault diagnosis in model-based diagnosis
engineering.

References

1 Reiter R. A theory of diagnosis from first principles. Artificial In-
telligence, 1987, 32(1): 57—96.

2 Greiner R., Smith B.A. and Wilkerson R. W. A correction to the
algorithm in Reiter’ s theory of diagnosis. Artificial Intelligence,
1989, 41(1): 79—88.

3 Wotawa F. A variant of Reiter’ s hitting-set algorithm. Informa-
tion Processing Letters, 2001, (79): 45—51.

4 Jiang Y. F. and Lin L. Computing the minimal hitting sets with
binary HS-tree. Journal of Software (in Chinese), 2002, 13(22):
2267—2274.

5 Jiang Y. F. and Lin L. The computation of hitting sets with
Boolean formulas. Chinese Journal of Computers (in Chinese),
2003, 26(8): 919—924.

6 Lin L. Computing minimal hitting sets with logic array in model-
based diagnosis. Journal of Jinan University (natural science) (in
Chinese), 2002, 23(1): 24—27.

7 LinL. and Jiang Y. F. Computing minimal hitting sets with ge-
netic algorithm. In: Proceedings of the 13th International Work-
shop on Principles of Diagnosis, Austria, 2002, 77—80.

8 Rymon R. Search through systematic set enumeration. In: Pro-
ceedings of the 3rd International Conference on Principles of
Knowledge Representation and Reasoning, Cambridge, MA,
1992, 539—550.

9 Lin L. The algorithms of computing minimal hitting sets in model-
based diagnosis. Application Research of Computer (in Chinese),
2002, (9): 36—39.

